Semi-convergence and Relaxation Parameters for a Class of Sirt Algorithms∗
نویسندگان
چکیده
This paper is concerned with the Simultaneous Iterative Reconstruction Technique (SIRT) class of iterative methods for solving inverse problems. Based on a careful analysis of the semi-convergence behavior of these methods, we propose two new techniques to specify the relaxation parameters adaptively during the iterations, so as to control the propagated noise component of the error. The advantage of using this strategy for the choice of relaxation parameters on noisy and ill-conditioned problems is demonstrated with an example from tomography (image reconstruction from projections).
منابع مشابه
Convergence of a semi-analytical method on the fuzzy linear systems
In this paper, we apply the homotopy analysis method (HAM) for solving fuzzy linear systems and present the necessary and sufficient conditions for the convergence of series solution obtained via the HAM. Also, we present a new criterion for choosing a proper value of convergence-control parameter $hbar$ when the HAM is applied to linear system of equations. Comparisons are made between the ...
متن کاملSemiconvergence and Relaxation Parameters for Projected SIRT Algorithms
We give a detailed study of the semiconvergence behavior of projected nonstationary simultaneous iterative reconstruction technique (SIRT) algorithms, including the projected Landweber algorithm. We also consider the use of a relaxation parameter strategy, proposed recently for the standard algorithms, for controlling the semiconvergence of the projected algorithms. We demonstrate the semiconve...
متن کاملMulticore Performance of Block Algebraic Iterative Reconstruction Methods
Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the Algebraic Reconstruction Techniques (ART) and the Simultaneous Iterative Reconstruction Techniques (SIRT), both of which rely on semi-convergence. Block versions of these methods, based on a partitioning of the linear system, are able t...
متن کاملOn the efficiency of iterative ordered subset reconstruction algorithms for acceleration on GPUs
Expectation Maximization (EM) and the Simultaneous Iterative Reconstruction Technique (SIRT) are two iterative computed tomography reconstruction algorithms often used when the data contain a high amount of statistical noise, have been acquired from a limited angular range, or have a limited number of views. A popular mechanism to increase the rate of convergence of these types of algorithms ha...
متن کاملGeneralized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کامل